Header menu logo FSharp.Stats

Categorical Type

Categorical distribution (finite discrete distribution over k categories with probabilities).

Static members

Static member Description

Categorical.CDF(probabilities) (x)

Full Usage: Categorical.CDF(probabilities) (x)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.
    x : float - A float value where CDF is evaluated (interpreted as an index).

Returns: float The cumulative probability up to and including ⌊x⌋.

Computes the cumulative distribution function at x: P(X ≤ x).

probabilities : float[]

An array of probabilities over k categories.

x : float

A float value where CDF is evaluated (interpreted as an index).

Returns: float

The cumulative probability up to and including ⌊x⌋.

Categorical.CdfToPmf(cdf)

Full Usage: Categorical.CdfToPmf(cdf)

Parameters:
    cdf : float[] - An array of cumulative weights.

Returns: float array A normalized probability mass function.

Converts a cumulative unnormalized weight array into a normalized PMF.

cdf : float[]

An array of cumulative weights.

Returns: float array

A normalized probability mass function.

Categorical.CheckParam(probabilities)

Full Usage: Categorical.CheckParam(probabilities)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.

Checks if the given probability vector is valid (all values ∈ [0,1] and sum to 1).

probabilities : float[]

An array of probabilities over k categories.

Categorical.Estimate(numCategories) (observations)

Full Usage: Categorical.Estimate(numCategories) (observations)

Parameters:
    numCategories : int - Total number of categories.
    observations : int[] - Array of category indices (0-based).

Returns: DiscreteDistribution<float, int> A categorical distribution fitted to the observations.

Estimates a categorical distribution from observed category indices.

numCategories : int

Total number of categories.

observations : int[]

Array of category indices (0-based).

Returns: DiscreteDistribution<float, int>

A categorical distribution fitted to the observations.

Categorical.Fit(numCategories) (observations)

Full Usage: Categorical.Fit(numCategories) (observations)

Parameters:
    numCategories : int - Total number of categories.
    observations : int[] - Array of category indices (0-based).

Returns: float array Estimated probability vector.

Fits the categorical distribution to a set of integer observations (category indices).

numCategories : int

Total number of categories.

observations : int[]

Array of category indices (0-based).

Returns: float array

Estimated probability vector.

Categorical.FromCdfUnnormalized(cdf)

Full Usage: Categorical.FromCdfUnnormalized(cdf)

Parameters:
    cdf : float[] - An array of cumulative unnormalized weights.

Returns: DiscreteDistribution<float, int> A normalized Categorical distribution.

Initializes a Categorical distribution from an unnormalized CDF.

cdf : float[]

An array of cumulative unnormalized weights.

Returns: DiscreteDistribution<float, int>

A normalized Categorical distribution.

Categorical.Init(probabilities)

Full Usage: Categorical.Init(probabilities)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.

Returns: DiscreteDistribution<float, int> A distribution implementing DiscreteDistribution.

Initializes a categorical distribution instance from a given probability vector.

probabilities : float[]

An array of probabilities over k categories.

Returns: DiscreteDistribution<float, int>

A distribution implementing DiscreteDistribution.

Categorical.Mean(probabilities)

Full Usage: Categorical.Mean(probabilities)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.

Returns: float The weighted average of indices based on probabilities.

Computes the mean (expected index) of the categorical distribution.

probabilities : float[]

An array of probabilities over k categories.

Returns: float

The weighted average of indices based on probabilities.

Categorical.PMF(probabilities) (k)

Full Usage: Categorical.PMF(probabilities) (k)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.
    k : int - The index to evaluate.

Returns: float The probability of observing category k.

Computes the probability mass function at index k: P(X = k).

probabilities : float[]

An array of probabilities over k categories.

k : int

The index to evaluate.

Returns: float

The probability of observing category k.

Categorical.Sample(probabilities)

Full Usage: Categorical.Sample(probabilities)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.

Returns: int An integer representing the sampled category index.

Generates a random sample from the categorical distribution.

probabilities : float[]

An array of probabilities over k categories.

Returns: int

An integer representing the sampled category index.

Categorical.SampleUnchecked(probabilities)

Full Usage: Categorical.SampleUnchecked(probabilities)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.

Returns: int An integer representing the sampled category index.

Generates a random sample from the categorical distribution. No parameter checking.

probabilities : float[]

An array of probabilities over k categories.

Returns: int

An integer representing the sampled category index.

Categorical.Support(probabilities)

Full Usage: Categorical.Support(probabilities)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.

Returns: Interval<int> A closed interval [0, k-1].

Returns the support (valid outcome range) of the distribution: [0, k-1].

probabilities : float[]

An array of probabilities over k categories.

Returns: Interval<int>

A closed interval [0, k-1].

Categorical.ToString(probabilities)

Full Usage: Categorical.ToString(probabilities)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.

Returns: string A string describing the distribution.

Returns a string representation of the categorical distribution.

probabilities : float[]

An array of probabilities over k categories.

Returns: string

A string describing the distribution.

Categorical.Variance(probabilities)

Full Usage: Categorical.Variance(probabilities)

Parameters:
    probabilities : float[] - An array of probabilities over k categories.

Returns: float The variance: E[X²] - (E[X])².

Computes the variance of the categorical distribution.

probabilities : float[]

An array of probabilities over k categories.

Returns: float

The variance: E[X²] - (E[X])².

Type something to start searching.