LinearAlgebra.cholesky(df)
Signature: df:Frame<'R,'C> -> Cholesky<float>
Type parameters: 'R, 'C
|
Cholesky decomposition
|
LinearAlgebra.condition(df)
Signature: df:Frame<'R,'C> -> float
Type parameters: 'R, 'C
|
Matrix condition
|
LinearAlgebra.conjugate(df)
Signature: df:Frame<'R,'C> -> Matrix<float>
Type parameters: 'R, 'C
|
Conjugate
|
LinearAlgebra.conjugateTranspose(df)
Signature: df:Frame<'R,'C> -> Matrix<float>
Type parameters: 'R, 'C
|
Conjugate tranpose
|
LinearAlgebra.determinant(df)
Signature: df:Frame<'R,'C> -> float
Type parameters: 'R, 'C
|
Matrix determinant
|
LinearAlgebra.eigen(df)
Signature: df:Frame<'R,'C> -> Evd<float>
Type parameters: 'R, 'C
|
Eigen values and eigen vectors of matrix
|
LinearAlgebra.inverse(df)
Signature: df:Frame<'R,'C> -> Matrix<float>
Type parameters: 'R, 'C
|
Inverse
|
LinearAlgebra.isHermitian(df)
Signature: df:Frame<'R,'C> -> bool
Type parameters: 'R, 'C
|
Check whether it is Hermitian matrix
|
LinearAlgebra.isSymmetric(df)
Signature: df:Frame<'R,'C> -> bool
Type parameters: 'R, 'C
|
Check whether it is symmetric matrix
|
LinearAlgebra.kernel(df)
Signature: df:Frame<'R,'C> -> Vector<float> []
Type parameters: 'R, 'C
|
Matrix kernel
|
LinearAlgebra.lu(df)
Signature: df:Frame<'R,'C> -> LU<float>
Type parameters: 'R, 'C
|
LU decomposition
|
LinearAlgebra.norm(df)
Signature: df:Frame<'R,'C> -> float
Type parameters: 'R, 'C
|
Norm
|
LinearAlgebra.normCols(df)
Signature: df:Frame<'R,'C> -> Vector<float>
Type parameters: 'R, 'C
|
Norm of columns
|
LinearAlgebra.normRows(df)
Signature: df:Frame<'R,'C> -> Vector<float>
Type parameters: 'R, 'C
|
Norm of rows
|
LinearAlgebra.nullity(df)
Signature: df:Frame<'R,'C> -> int
Type parameters: 'R, 'C
|
Matrix nullity
|
LinearAlgebra.pseudoInverse(df)
Signature: df:Frame<'R,'C> -> Matrix<float>
Type parameters: 'R, 'C
|
Pseudo-inverse of matrix
|
LinearAlgebra.qr(df)
Signature: df:Frame<'R,'C> -> QR<float>
Type parameters: 'R, 'C
|
QR decomposition
|
LinearAlgebra.range(df)
Signature: df:Frame<'R,'C> -> Vector<float> []
Type parameters: 'R, 'C
|
Matrix range
|
LinearAlgebra.rank(df)
Signature: df:Frame<'R,'C> -> int
Type parameters: 'R, 'C
|
Matrix rank
|
LinearAlgebra.svd(df)
Signature: df:Frame<'R,'C> -> Svd<float>
Type parameters: 'R, 'C
|
SVD decomposition
|
LinearAlgebra.trace(df)
Signature: df:Frame<'R,'C> -> float
Type parameters: 'R, 'C
|
Matrix trace
|
LinearAlgebra.transpose(df)
Signature: df:Frame<'R,'C> -> Frame<'C,'R>
Type parameters: 'R, 'C
|
Transpose.
Performance is faster than generic Frame.transpose as it only applies to frame of float values
|