Deedle


LinearAlgebra

Namespace: Deedle.Math

Linear algebra on frame using MathNet.Numerics library.

Static members

Static memberDescription
LinearAlgebra.cholesky(df)
Signature: df:Frame<'R,'C> -> Cholesky<float>
Type parameters: 'R, 'C

Cholesky decomposition

LinearAlgebra.condition(df)
Signature: df:Frame<'R,'C> -> float
Type parameters: 'R, 'C

Matrix condition

LinearAlgebra.conjugate(df)
Signature: df:Frame<'R,'C> -> Matrix<float>
Type parameters: 'R, 'C

Conjugate

LinearAlgebra.conjugateTranspose(df)
Signature: df:Frame<'R,'C> -> Matrix<float>
Type parameters: 'R, 'C

Conjugate tranpose

LinearAlgebra.determinant(df)
Signature: df:Frame<'R,'C> -> float
Type parameters: 'R, 'C

Matrix determinant

LinearAlgebra.eigen(df)
Signature: df:Frame<'R,'C> -> Evd<float>
Type parameters: 'R, 'C

Eigen values and eigen vectors of matrix

LinearAlgebra.inverse(df)
Signature: df:Frame<'R,'C> -> Matrix<float>
Type parameters: 'R, 'C

Inverse

LinearAlgebra.isHermitian(df)
Signature: df:Frame<'R,'C> -> bool
Type parameters: 'R, 'C

Check whether it is Hermitian matrix

LinearAlgebra.isSymmetric(df)
Signature: df:Frame<'R,'C> -> bool
Type parameters: 'R, 'C

Check whether it is symmetric matrix

LinearAlgebra.kernel(df)
Signature: df:Frame<'R,'C> -> Vector<float> []
Type parameters: 'R, 'C

Matrix kernel

LinearAlgebra.lu(df)
Signature: df:Frame<'R,'C> -> LU<float>
Type parameters: 'R, 'C

LU decomposition

LinearAlgebra.norm(df)
Signature: df:Frame<'R,'C> -> float
Type parameters: 'R, 'C

Norm

LinearAlgebra.normCols(df)
Signature: df:Frame<'R,'C> -> Vector<float>
Type parameters: 'R, 'C

Norm of columns

LinearAlgebra.normRows(df)
Signature: df:Frame<'R,'C> -> Vector<float>
Type parameters: 'R, 'C

Norm of rows

LinearAlgebra.nullity(df)
Signature: df:Frame<'R,'C> -> int
Type parameters: 'R, 'C

Matrix nullity

LinearAlgebra.pseudoInverse(df)
Signature: df:Frame<'R,'C> -> Matrix<float>
Type parameters: 'R, 'C

Pseudo-inverse of matrix

LinearAlgebra.qr(df)
Signature: df:Frame<'R,'C> -> QR<float>
Type parameters: 'R, 'C

QR decomposition

LinearAlgebra.range(df)
Signature: df:Frame<'R,'C> -> Vector<float> []
Type parameters: 'R, 'C

Matrix range

LinearAlgebra.rank(df)
Signature: df:Frame<'R,'C> -> int
Type parameters: 'R, 'C

Matrix rank

LinearAlgebra.svd(df)
Signature: df:Frame<'R,'C> -> Svd<float>
Type parameters: 'R, 'C

SVD decomposition

LinearAlgebra.trace(df)
Signature: df:Frame<'R,'C> -> float
Type parameters: 'R, 'C

Matrix trace

LinearAlgebra.transpose(df)
Signature: df:Frame<'R,'C> -> Frame<'C,'R>
Type parameters: 'R, 'C

Transpose. Performance is faster than generic Frame.transpose as it only applies to frame of float values

Fork me on GitHub