NonLinearRegression Module

Types and nested modules

Type/Module Description

GaussNewton

LevenbergMarquardt

LevenbergMarquardtConstrained

This LevenbergMarquardt implementation supports the usage of box constrains.

Table

Model

SolverOptions

Functions and values

Function or value Description

createModel parameterNames getFunctionValue getGradientValue

Full Usage: createModel parameterNames getFunctionValue getGradientValue

Parameters:
    parameterNames : string[]
    getFunctionValue : Vector<float> -> float -> float
    getGradientValue : Vector<float> -> Vector<float> -> float -> Vector<float>

Returns: Model
parameterNames : string[]
getFunctionValue : Vector<float> -> float -> float
getGradientValue : Vector<float> -> Vector<float> -> float -> Vector<float>
Returns: Model

createSolverOption minimumDeltaValue minimumDeltaParameters maximumIterations initialParamGuess

Full Usage: createSolverOption minimumDeltaValue minimumDeltaParameters maximumIterations initialParamGuess

Parameters:
    minimumDeltaValue : float
    minimumDeltaParameters : float
    maximumIterations : int
    initialParamGuess : float[]

Returns: SolverOptions
minimumDeltaValue : float
minimumDeltaParameters : float
maximumIterations : int
initialParamGuess : float[]
Returns: SolverOptions

getRSS model xData yData paramVector

Full Usage: getRSS model xData yData paramVector

Parameters:
    model : Model -
    xData : float[] -
    yData : float[] -
    paramVector : Vector<float> -

Returns: float

Returns the residual sum of squares (RSS) as a measure of discrepancy between the data and the used estimation model.

model : Model

xData : float[]

yData : float[]

paramVector : Vector<float>

Returns: float

Example

shouldTerminate currentValueRSS newValueRSS iterationCount currentParamGuess newParamGuess solverOptions

Full Usage: shouldTerminate currentValueRSS newValueRSS iterationCount currentParamGuess newParamGuess solverOptions

Parameters:
    currentValueRSS : float -
    newValueRSS : float -
    iterationCount : int -
    currentParamGuess : Vector<float> -
    newParamGuess : Vector<float> -
    solverOptions : SolverOptions -

Returns: bool

Returns true if convergence criteria are met or a user defined number of iiterations has been carried out

currentValueRSS : float

newValueRSS : float

iterationCount : int

currentParamGuess : Vector<float>

newParamGuess : Vector<float>

solverOptions : SolverOptions

Returns: bool

Example

solverConverged solverOptions estParams

Full Usage: solverConverged solverOptions estParams

Parameters:
Returns: bool
solverOptions : SolverOptions
estParams : ResizeArray<vector>
Returns: bool

standardErrorOfPrediction dOF predicted actual

Full Usage: standardErrorOfPrediction dOF predicted actual

Parameters:
    dOF : float
    predicted : float[]
    actual : float[]

Returns: float
dOF : float
predicted : float[]
actual : float[]
Returns: float

updateJacobianInplace model xData paramVector jacobian

Full Usage: updateJacobianInplace model xData paramVector jacobian

Parameters:
Returns: Matrix<float>
model : Model
xData : float[]
paramVector : Vector<float>
jacobian : Matrix<float>
Returns: Matrix<float>

updateResidualVectorInPlace model xData yData paramVector residualVector

Full Usage: updateResidualVectorInPlace model xData yData paramVector residualVector

Parameters:
    model : Model -
    xData : float[] -
    yData : float[] -
    paramVector : Vector<float> -
    residualVector : Vector<float> -

Returns: Vector<float>

Returns the residual vector, each row i contains the difference between the yEst_i and the yData_i.

model : Model

xData : float[]

yData : float[]

paramVector : Vector<float>

residualVector : Vector<float>

Returns: Vector<float>

Example