Header menu logo FSharp.Stats

LevenbergMarquardtConstrained Module

This LevenbergMarquardt implementation supports the usage of box constrains.

Functions and values

Function or value Description

estimatedParams model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Full Usage: estimatedParams model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Parameters:
    model : Model -
    solverOptions : SolverOptions -
    lambdaInitial : float -
    lambdaFactor : float -
    lowerBound : Vector<float> -
    upperBound : Vector<float> -
    xData : float[] -
    yData : float[] -

Returns: Vector<float>

Returns a parameter vector as a possible solution for linear least square based nonlinear fitting of a given dataset (xData, yData) with a given
model function.

model : Model

solverOptions : SolverOptions

lambdaInitial : float

lambdaFactor : float

lowerBound : Vector<float>

upperBound : Vector<float>

xData : float[]

yData : float[]

Returns: Vector<float>

Example

estimatedParamsVerbose model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Full Usage: estimatedParamsVerbose model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Parameters:
    model : Model -
    solverOptions : SolverOptions -
    lambdaInitial : float -
    lambdaFactor : float -
    lowerBound : Vector<float> -
    upperBound : Vector<float> -
    xData : float[] -
    yData : float[] -

Returns: ResizeArray<Vector<float>>

Returns an collection of parameter vectors as a possible solution for least square based nonlinear fitting of a given dataset (xData, yData) with a given
model function.

model : Model

solverOptions : SolverOptions

lambdaInitial : float

lambdaFactor : float

lowerBound : Vector<float>

upperBound : Vector<float>

xData : float[]

yData : float[]

Returns: ResizeArray<Vector<float>>

Example

estimatedParamsWithRSS model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Full Usage: estimatedParamsWithRSS model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Parameters:
    model : Model -
    solverOptions : SolverOptions -
    lambdaInitial : float -
    lambdaFactor : float -
    lowerBound : Vector<float> -
    upperBound : Vector<float> -
    xData : float[] -
    yData : float[] -

Returns: Vector<float> * float

Returns a parameter vector tupled with its residual sum of squares (RSS) as a possible solution for linear least square based nonlinear fitting of a given dataset (xData, yData) with a given
model function.

model : Model

solverOptions : SolverOptions

lambdaInitial : float

lambdaFactor : float

lowerBound : Vector<float>

upperBound : Vector<float>

xData : float[]

yData : float[]

Returns: Vector<float> * float

Example

initialParam xData yData cutoffPercentage

Full Usage: initialParam xData yData cutoffPercentage

Parameters:
    xData : float[] -
    yData : float[] -
    cutoffPercentage : float -

Returns: float[]

Returns an estimate for an initial parameter for the linear least square estimator for a given dataset (xData, yData).
The initial estimation is intended for a logistic function.
The returned parameters are the max y value, the steepness of the curve and the x value in the middle of the slope.

xData : float[]

yData : float[]

cutoffPercentage : float

Returns: float[]

Example

initialParamsOverRange xData yData steepnessRange

Full Usage: initialParamsOverRange xData yData steepnessRange

Parameters:
    xData : float[] -
    yData : float[] -
    steepnessRange : float[] -

Returns: float[] array

Returns an estimate for an initial parameter for the linear least square estimator for a given dataset (xData, yData).
The steepness is given as an array and not estimated. An initial estimate is returned for every given steepness.
The initial estimation is intended for a logistic function.

xData : float[]

yData : float[]

steepnessRange : float[]

Returns: float[] array

Example

Type something to start searching.