LevenbergMarquardtConstrained Module

This LevenbergMarquardt implementation supports the usage of box constrains.

Functions and values

Function or value Description

estimatedParams model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Full Usage: estimatedParams model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Parameters:
    model : Model -
    solverOptions : SolverOptions -
    lambdaInitial : float -
    lambdaFactor : float -
    lowerBound : vector -
    upperBound : vector -
    xData : float[] -
    yData : float[] -

Returns: vector

Returns a parameter vector as a possible solution for linear least square based nonlinear fitting of a given dataset (xData, yData) with a given
model function.

model : Model

solverOptions : SolverOptions

lambdaInitial : float

lambdaFactor : float

lowerBound : vector

upperBound : vector

xData : float[]

yData : float[]

Returns: vector

Example

estimatedParamsVerbose model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Full Usage: estimatedParamsVerbose model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Parameters:
    model : Model -
    solverOptions : SolverOptions -
    lambdaInitial : float -
    lambdaFactor : float -
    lowerBound : vector -
    upperBound : vector -
    xData : float[] -
    yData : float[] -

Returns: ResizeArray<vector>

Returns an collection of parameter vectors as a possible solution for least square based nonlinear fitting of a given dataset (xData, yData) with a given
model function.

model : Model

solverOptions : SolverOptions

lambdaInitial : float

lambdaFactor : float

lowerBound : vector

upperBound : vector

xData : float[]

yData : float[]

Returns: ResizeArray<vector>

Example

estimatedParamsWithRSS model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Full Usage: estimatedParamsWithRSS model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData

Parameters:
    model : Model -
    solverOptions : SolverOptions -
    lambdaInitial : float -
    lambdaFactor : float -
    lowerBound : vector -
    upperBound : vector -
    xData : float[] -
    yData : float[] -

Returns: vector * float

Returns a parameter vector tupled with its residual sum of squares (RSS) as a possible solution for linear least square based nonlinear fitting of a given dataset (xData, yData) with a given
model function.

model : Model

solverOptions : SolverOptions

lambdaInitial : float

lambdaFactor : float

lowerBound : vector

upperBound : vector

xData : float[]

yData : float[]

Returns: vector * float

Example

initialParam xData yData cutoffPercentage

Full Usage: initialParam xData yData cutoffPercentage

Parameters:
    xData : float[] -
    yData : float[]
    cutoffPercentage : float

Returns: float[]

Returns an estimate for an initial parameter for the linear least square estimator for a given dataset (xData, yData).
The initial estimation is intended for a logistic function.
The returned parameters are the max y value, the steepness of the curve and the x value in the middle of the slope.

xData : float[]

yData : float[]
cutoffPercentage : float
Returns: float[]

Example

initialParamsOverRange xData yData steepnessRange

Full Usage: initialParamsOverRange xData yData steepnessRange

Parameters:
    xData : float[] -
    yData : float[] -
    steepnessRange : float[] -

Returns: float[][]

Returns an estimate for an initial parameter for the linear least square estimator for a given dataset (xData, yData).
The steepness is given as an array and not estimated. An initial estimate is returned for every given steepness.
The initial estimation is intended for a logistic function.

xData : float[]

yData : float[]

steepnessRange : float[]

Returns: float[][]

Example