This LevenbergMarquardt implementation supports the usage of box constrains.
Function or value | Description |
Full Usage:
estimatedParams model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData
Parameters:
Model
-
solverOptions : SolverOptions
-
lambdaInitial : float
-
lambdaFactor : float
-
lowerBound : vector
-
upperBound : vector
-
xData : float[]
-
yData : float[]
-
Returns: vector
|
Returns a parameter vector as a possible solution for linear least square based nonlinear fitting of a given dataset (xData, yData) with a given
Example
|
Full Usage:
estimatedParamsVerbose model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData
Parameters:
Model
-
solverOptions : SolverOptions
-
lambdaInitial : float
-
lambdaFactor : float
-
lowerBound : vector
-
upperBound : vector
-
xData : float[]
-
yData : float[]
-
Returns: ResizeArray<vector>
|
Returns an collection of parameter vectors as a possible solution for least square based nonlinear fitting of a given dataset (xData, yData) with a given
Example
|
Full Usage:
estimatedParamsWithRSS model solverOptions lambdaInitial lambdaFactor lowerBound upperBound xData yData
Parameters:
Model
-
solverOptions : SolverOptions
-
lambdaInitial : float
-
lambdaFactor : float
-
lowerBound : vector
-
upperBound : vector
-
xData : float[]
-
yData : float[]
-
Returns: vector * float
|
Returns a parameter vector tupled with its residual sum of squares (RSS) as a possible solution for linear least square based nonlinear fitting of a given dataset (xData, yData) with a given
Example
|
Full Usage:
initialParam xData yData cutoffPercentage
Parameters:
float[]
-
yData : float[]
cutoffPercentage : float
Returns: float[]
|
Returns an estimate for an initial parameter for the linear least square estimator for a given dataset (xData, yData).
Example
|
Full Usage:
initialParamsOverRange xData yData steepnessRange
Parameters:
float[]
-
yData : float[]
-
steepnessRange : float[]
-
Returns: float[][]
|
Returns an estimate for an initial parameter for the linear least square estimator for a given dataset (xData, yData).
Example
|