Table Module

Nested modules

Modules Description

Finances

GrowthModels

Functions and values

Function or value Description

LogisticFunctionAscending

Full Usage: LogisticFunctionAscending

Returns: Model

Logistic function of the form "y = L/(1+e^(-k(t-x)))"

Returns: Model

LogisticFunctionDescending

Full Usage: LogisticFunctionDescending

Returns: Model

Logistic function of the form "y = L/(1+e^(k(t-x)))"

Returns: Model

LogisticFunctionVarYAscending

Full Usage: LogisticFunctionVarYAscending

Returns: Model

Logistic function of the form "y = L/(1+e^(-k(t-x)))+N" Modified version of the Logistic function model with a variable curve minimum.

Returns: Model

LogisticFunctionVarYDescending

Full Usage: LogisticFunctionVarYDescending

Returns: Model

Logistic function of the form "y = L/(1+e^(k(t-x)))+N" Modified version of the Logistic function model with a variable curve minimum.

Returns: Model

emgModel

Full Usage: emgModel

Returns: Model
Returns: Model

emgSolverOptions initialParamGuess

Full Usage: emgSolverOptions initialParamGuess

Parameters:
    initialParamGuess : float[]

Returns: SolverOptions
initialParamGuess : float[]
Returns: SolverOptions

expModel

Full Usage: expModel

Returns: Model

Exponential function of the form "y = a * exp(b * x)"

Returns: Model

expSolverOptions xData yData

Full Usage: expSolverOptions xData yData

Parameters:
    xData : float[] -
    yData : float[]

Returns: SolverOptions

Takes the result of the linearization as initialGuessParams

xData : float[]

yData : float[]
Returns: SolverOptions

Example

gaussModel

Full Usage: gaussModel

Returns: Model

Gaussian function of the form "y = amp * exp( -1. * ( ( ( (x-meanX)**2. ) / (2.*std**2.)) ) )"

Returns: Model

gaussSolverOptions initialParamGuess

Full Usage: gaussSolverOptions initialParamGuess

Parameters:
    initialParamGuess : float[]

Returns: SolverOptions
initialParamGuess : float[]
Returns: SolverOptions

hillModel

Full Usage: hillModel

Returns: Model

Hill equation "y = Vm * x^n / (k^n+x^n)"

Returns: Model

hillSolverOptions Vm n k

Full Usage: hillSolverOptions Vm n k

Parameters:
    Vm : float
    n : float
    k : float

Returns: SolverOptions
Vm : float
n : float
k : float
Returns: SolverOptions

lineModel

Full Usage: lineModel

Returns: Model

Line Line model of the form "y = a * x + b"

Returns: Model

lineSolverOptions initialParamGuess

Full Usage: lineSolverOptions initialParamGuess

Parameters:
    initialParamGuess : float[]

Returns: SolverOptions
initialParamGuess : float[]
Returns: SolverOptions

logNormalModel

Full Usage: logNormalModel

Returns: Model

log normal distribution

Returns: Model

logNormalOptions sample

Full Usage: logNormalOptions sample

Parameters:
    sample : float[] -

Returns: SolverOptions

Takes the result of the linearization as initialGuessParams

sample : float[]

Returns: SolverOptions

Example

parabolaModel

Full Usage: parabolaModel

Returns: Model

Parabola paraboola model of the form "y = a * x^2 + b * x + c"

Returns: Model

parabolaSolverOptions initialParamGuess

Full Usage: parabolaSolverOptions initialParamGuess

Parameters:
    initialParamGuess : float[]

Returns: SolverOptions
initialParamGuess : float[]
Returns: SolverOptions

richardsGenericDescending

Full Usage: richardsGenericDescending

Returns: Model

Descending version of the generalized logistic function or curve, also known as Richards' curve with 7 parameters. Logistic function of the form "Y(t) = A + (K - A) / (C + Q * e^(B * (t - M)))**(1. / v)"

Returns: Model