NumericalIntegrationMethod Type

Approximation methods for definitive integral estimation

Union cases

Union case Description

LeftEndpoint

Full Usage: LeftEndpoint

Left Riemann sum or left endpoint rule - approximation via partition intervals using the function values of the left partition boundary

Midpoint

Full Usage: Midpoint

Midpoint rule - approximation via partition intervals using the function values of the mid points of the partition boundaries Note: when estimating definite integrals for observations, the best guess for midpoints is at xMid = (x2-x1)/2 , yMid = (y2-y1)/2 which will lead to the same results as the trapezoidal rule.

RightEndpoint

Full Usage: RightEndpoint

Right Riemann sum or right endpoint rule - approximation via partition intervals using the function values of the right partition boundary

Simpson

Full Usage: Simpson

Simpson's 1/3 rule or 'Kepplersche Fa�regel' (barrel rule) - approximation via parabolas

Trapezoidal

Full Usage: Trapezoidal

Trapezoidal rule - approximation via partition intervals using trapezoids in the partition boundaries

Static members

Static member Description

NumericalIntegrationMethod.calculateDefiniteFunctionIntegral

Full Usage: NumericalIntegrationMethod.calculateDefiniteFunctionIntegral

Returns: NumericalIntegrationMethod -> (float -> float) -> seq<float> -> float -> float

returns a function that estimates the definite integral of a function with the given method

Returns: NumericalIntegrationMethod -> (float -> float) -> seq<float> -> float -> float

NumericalIntegrationMethod.calculateDefiniteFunctionIntegralParallel

Full Usage: NumericalIntegrationMethod.calculateDefiniteFunctionIntegralParallel

Returns: NumericalIntegrationMethod -> (float -> float) -> seq<float> -> float -> float

returns a function that estimates the definite integral of a function with the given method in parallel

Returns: NumericalIntegrationMethod -> (float -> float) -> seq<float> -> float -> float

NumericalIntegrationMethod.calculateDefiniteObservationIntegral

Full Usage: NumericalIntegrationMethod.calculateDefiniteObservationIntegral

Returns: NumericalIntegrationMethod -> (float * float)[] -> float

returns a function that estimates the definite integral of observations with the given method

Returns: NumericalIntegrationMethod -> (float * float)[] -> float

NumericalIntegrationMethod.getObservationPartitionIntegrals

Full Usage: NumericalIntegrationMethod.getObservationPartitionIntegrals

Returns: NumericalIntegrationMethod -> (float * float)[] -> float[]

returns a function that returns the estimated partition integrals of observations with the given method

Returns: NumericalIntegrationMethod -> (float * float)[] -> float[]

NumericalIntegrationMethod.getPartitionIntegrals

Full Usage: NumericalIntegrationMethod.getPartitionIntegrals

Returns: NumericalIntegrationMethod -> (float -> float) -> seq<float> -> float -> seq<float>

returns a function that returns the estimated partition integrals of a function with the given method

Returns: NumericalIntegrationMethod -> (float -> float) -> seq<float> -> float -> seq<float>