Continuous Module

Types

Type Description

Beta

Beta distribution

Chi

Chi distribution.

ChiSquared

ChiSquared distribution.

Exponential

Exponential distribution.

F

F-distribution

Gamma

Gamma distribution Sampling implementation based on: "A Simple Method for Generating Gamma Variables" - Marsaglia & Tsang ACM Transactions on Mathematical Software, Vol. 26, No. 3, September 2000, Pages 363-372.

LogNormal

Log-Normal distribution.

MultivariateNormal

multivariate normal distribution.

Normal

Normal distribution.

StudentT

Student's T-distribution

StudentizedRange

Studentized range (q) distribution. Used in Tukey's HSD post hoc test. method from: QUANTILES FROM THE MAXIMUM STUDENTIZED RANGE DISTRIBUTION, Ferreira, Rev. Mat. Estat., v.25, n.1, p.117-135, 2007 table from: Tables of range and studentized range, Harter, 1960 and Lawal B, Applied Statistical Methods in Agriculture, Health and Life Sciences, DOI 10.1007/978-3-319-05555-8, 2014

Tails

Uniform

Uniform distribution.

Functions and values

Function or value Description

beta alpha beta

Full Usage: beta alpha beta

Parameters:
    alpha : float
    beta : float

Returns: Distribution<float, float>

Initializes a Beta distribution

alpha : float
beta : float
Returns: Distribution<float, float>

chi dof

Full Usage: chi dof

Parameters:
    dof : float

Returns: Distribution<float, float>

Initializes a Chi distribution

dof : float
Returns: Distribution<float, float>

chiCheckParam dof

Full Usage: chiCheckParam dof

Parameters:
    dof : float

dof : float

chiSquared dof

Full Usage: chiSquared dof

Parameters:
    dof : float

Returns: Distribution<float, float>

Initializes a ChiSquared distribution

dof : float
Returns: Distribution<float, float>

chiSquaredCheckParam dof

Full Usage: chiSquaredCheckParam dof

Parameters:
    dof : float

dof : float

expCheckParam lambda

Full Usage: expCheckParam lambda

Parameters:
    lambda : float

lambda : float

exponential lambda

Full Usage: exponential lambda

Parameters:
    lambda : float

Returns: Distribution<float, float>

Initializes a Exponential distribution

lambda : float
Returns: Distribution<float, float>

f dof1 dof2

Full Usage: f dof1 dof2

Parameters:
    dof1 : float
    dof2 : float

Returns: Distribution<float, float>

Initializes a F-distribution

dof1 : float
dof2 : float
Returns: Distribution<float, float>

fCheckParam dof1 dof2

Full Usage: fCheckParam dof1 dof2

Parameters:
    dof1 : float
    dof2 : float

dof1 : float
dof2 : float

gamma alpha beta

Full Usage: gamma alpha beta

Parameters:
    alpha : float
    beta : float

Returns: Distribution<float, float>

Initializes a Gamma distribution

alpha : float
beta : float
Returns: Distribution<float, float>

gammaCheckParam alpha beta

Full Usage: gammaCheckParam alpha beta

Parameters:
    alpha : float
    beta : float

alpha : float
beta : float

getCriticalTValue df significanceLevel tailed

Full Usage: getCriticalTValue df significanceLevel tailed

Parameters:
    df : float
    significanceLevel : float
    tailed : Tails

Returns: float
df : float
significanceLevel : float
tailed : Tails
Returns: float

logNormal mu tau

Full Usage: logNormal mu tau

Parameters:
    mu : float
    tau : float

Returns: Distribution<float, float>

Initializes a Normal distribution

mu : float
tau : float
Returns: Distribution<float, float>

logNormalCheckParam mu tau

Full Usage: logNormalCheckParam mu tau

Parameters:
    mu : float
    tau : float

mu : float
tau : float

multivariateNormal mu sigma

Full Usage: multivariateNormal mu sigma

Parameters:
Returns: Distribution<vector, vector>

Initializes a multivariate normal distribution with mean mu and covariance matrix sigma

mu : vector
sigma : matrix
Returns: Distribution<vector, vector>

multivariateNormalCheckParam mu sigma

Full Usage: multivariateNormalCheckParam mu sigma

Parameters:
mu : vector
sigma : matrix

normal mu sigma

Full Usage: normal mu sigma

Parameters:
    mu : float
    sigma : float

Returns: Distribution<float, float>

Initializes a Normal distribution

mu : float
sigma : float
Returns: Distribution<float, float>

normalCheckParam mu sigma

Full Usage: normalCheckParam mu sigma

Parameters:
    mu : float
    sigma : float

mu : float
sigma : float

studentT mu tau dof

Full Usage: studentT mu tau dof

Parameters:
    mu : float
    tau : float
    dof : float

Returns: Distribution<float, float>

Initializes a Student's T-distribution

mu : float
tau : float
dof : float
Returns: Distribution<float, float>

studentTCheckParam mu tau dof

Full Usage: studentTCheckParam mu tau dof

Parameters:
    mu : float
    tau : float
    dof : float

mu : float
tau : float
dof : float

studentizedRange r v c accuracy computeParallel

Full Usage: studentizedRange r v c accuracy computeParallel

Parameters:
    r : float
    v : float
    c : float
    accuracy : int option
    computeParallel : bool

Returns: Distribution<float, float>

Initializes a studentized range distribution. Accuracy defines the number of steps within the CDF integration (Recommended: 1k-10k, default: 2k). pValue accuracy is minimum 3 digits for v>3. q:qValue r:number of treatments v:df (n-r) c:1. Integration can be performed in parallel using PSeq

r : float
v : float
c : float
accuracy : int option
computeParallel : bool
Returns: Distribution<float, float>

studentizedRangeCheckParam q r v

Full Usage: studentizedRangeCheckParam q r v

Parameters:
    q : float
    r : float
    v : float

Studentized range distribution helper functions.

q : float
r : float
v : float

uniform min max

Full Usage: uniform min max

Parameters:
    min : float
    max : float

Returns: Distribution<float, float>

Initializes a uniform distribution

min : float
max : float
Returns: Distribution<float, float>

uniformCheckParam min max

Full Usage: uniformCheckParam min max

Parameters:
    min : float
    max : float

min : float
max : float