MultivariateNormal Type

multivariate normal distribution.

Static members

Static member Description

MultivariateNormal.CDF(mu) (sigma) (x)

Full Usage: MultivariateNormal.CDF(mu) (sigma) (x)

Parameters:
Returns: 'a

Computes the cumulative distribution function.

mu : vector
sigma : matrix
x : vector
Returns: 'a

MultivariateNormal.Mean(mu) (sigma)

Full Usage: MultivariateNormal.Mean(mu) (sigma)

Parameters:
Returns: vector

Computes the mean.

mu : vector
sigma : matrix
Returns: vector

MultivariateNormal.PDF(mu) (sigma) (x)

Full Usage: MultivariateNormal.PDF(mu) (sigma) (x)

Parameters:
Returns: float

Computes the probability density function.

mu : vector
sigma : matrix
x : vector
Returns: float

MultivariateNormal.Sample(mu) (sigma)

Full Usage: MultivariateNormal.Sample(mu) (sigma)

Parameters:
Returns: Vector<float>

Produces a random sample using the current random number generator (from GetSampleGenerator()).

mu : vector
sigma : matrix
Returns: Vector<float>

MultivariateNormal.StandardDeviation(mu) (sigma)

Full Usage: MultivariateNormal.StandardDeviation(mu) (sigma)

Parameters:
Returns: 'a

Computes the standard deviation.

mu : vector
sigma : matrix
Returns: 'a

MultivariateNormal.Variance(mu) (sigma)

Full Usage: MultivariateNormal.Variance(mu) (sigma)

Parameters:
Returns: 'a

Computes the variance.

mu : vector
sigma : matrix
Returns: 'a

MultivariateNormal.init mu sigma

Full Usage: MultivariateNormal.init mu sigma

Parameters:
Returns: Distribution<vector, vector>

Initializes a multivariate normal distribution with mean mu and covariance matrix sigma

mu : vector
sigma : matrix
Returns: Distribution<vector, vector>