ILinearAlgebra Type

This is an internal interface and not for user usage. It exposes a specialised subset of BLAS/LAPACK functionality. This functionality is used by us to build the exposed APIs. It is those exposed APIs that should be used.

Instance members

Instance member Description

this.dgemm_ (arg1, arg2)

Full Usage: this.dgemm_ (arg1, arg2)

Parameters:
Returns: Matrix<float>
Modifiers: abstract
arg0 : Matrix<float>
arg1 : Matrix<float>
Returns: Matrix<float>

this.dgesdd_ arg1

Full Usage: this.dgesdd_ arg1

Parameters:
Returns: double array * Matrix<float> * Matrix<float>
Modifiers: abstract

Returns the full Singular Value Decomposition of the input MxN matrix A : A = U * SIGMA * V**T in the tuple (S, U, V**T), where S is an array containing the diagonal elements of SIGMA. uses the LAPACK routine dgesdd with the argument JOBZ = 'A'

arg0 : Matrix<float>
Returns: double array * Matrix<float> * Matrix<float>

this.dgesdd_thin_ arg1

Full Usage: this.dgesdd_thin_ arg1

Parameters:
Returns: double array * Matrix<float> * Matrix<float>
Modifiers: abstract

Returns the thin Singular Value Decomposition of the input MxN matrix A A = U * SIGMA * V**T in the tuple (S, U, V**T), where S is an array containing the diagonal elements of SIGMA. The first min(M,N) columns of U and the first min(M,N) rows of V**T are returned in the arrays U and VT; uses the LAPACK routine dgesdd with the argument JOBZ = 'S'

arg0 : Matrix<float>
Returns: double array * Matrix<float> * Matrix<float>

this.dsyevd_ arg1

Full Usage: this.dsyevd_ arg1

Parameters:
Returns: Matrix<float> * Vector<float>
Modifiers: abstract

Computes for a N-by-N real symmetric matrix A, the eigenvalue decomposition of eigenvalues and right eigenvectors. The right eigenvector v(j) of A satisfies A * v(j) = lambda(j) * v(j) where lambda(j) is its eigenvalue.

arg0 : Matrix<float>
Returns: Matrix<float> * Vector<float>