PostHoc Module

Functions and values

Function or value Description

createContrast index l degreesOfFreedom meanSquares significance statistic sumOfSquares

Full Usage: createContrast index l degreesOfFreedom meanSquares significance statistic sumOfSquares

Parameters:
    index : int
    l : float
    degreesOfFreedom : float
    meanSquares : float
    significance : float
    statistic : float
    sumOfSquares : float

Returns: Contrast
index : int
l : float
degreesOfFreedom : float
meanSquares : float
significance : float
statistic : float
sumOfSquares : float
Returns: Contrast

dunnetts contrastMatrix data criticalTable

Full Usage: dunnetts contrastMatrix data criticalTable

Parameters:
    contrastMatrix : float[][]
    data : float[][]
    criticalTable : Matrix<float>

Returns: CriticalValueContrast[]

Dunnetts post hoc test compares groups to one control group (multiple-to-one comparison). Returns if the groups defined in the contrast differ significantly (already multi comparison corrected for FWER < a) Critical value tables can be found in Testing.Tables

contrastMatrix : float[][]
data : float[][]
criticalTable : Matrix<float>
Returns: CriticalValueContrast[]

fishersLSD contrastMatrix data

Full Usage: fishersLSD contrastMatrix data

Parameters:
    contrastMatrix : float[][]
    data : float[][]

Returns: Contrast[]

Fisher's LSD. Sequential t tests with the variance estimated from all samples instead of the individual groups. FishersLSD requires ANOVA protection (apply ANOVA first). Not multiple testing corrected! Apply e.g. Benjamini-Hochberg method afterwards.

contrastMatrix : float[][]
data : float[][]
Returns: Contrast[]

hays contrastMatrix data

Full Usage: hays contrastMatrix data

Parameters:
    contrastMatrix : float[][]
    data : float[][]

Returns: Contrast[]
contrastMatrix : float[][]
data : float[][]
Returns: Contrast[]

tukeyHSD contrastMatrix data

Full Usage: tukeyHSD contrastMatrix data

Parameters:
    contrastMatrix : float[][]
    data : float[][]

Returns: Contrast[]

Tukey-Kramer approach

contrastMatrix : float[][]
data : float[][]
Returns: Contrast[]