|
Computes an approximation of the real value of the beta function using approximations for the gamma function using Lanczos Coefficients described in Numerical Recipes (Press et al)
-
z
:
float
-
The function input for approximating B(z, w)
-
w
:
float
-
The function input for approximating B(z, w)
-
Returns:
float
|
|
Computes an approximation of the real value of the log beta function using approximations for the gamma function using Lanczos Coefficients described in Numerical Recipes (Press et al)
-
z
:
float
-
The function input for approximating ln(B(z, w))
-
w
:
float
-
The function input for approximating ln(B(z, w))
-
Returns:
float
|
|
Computes an approximation of the real value of the beta function using approximations for the gamma function using Lanczos Coefficients described in Numerical Recipes (Press et al)
-
z
:
float
-
The function input for approximating B(z, w)
-
w
:
float
-
The function input for approximating B(z, w)
-
Returns:
float
|
|
Computes an approximation of the real value of the log beta function using approximations for the gamma function using Lanczos Coefficients described in Numerical Recipes (Press et al)
-
z
:
float
-
The function input for approximating ln(B(z, w))
-
w
:
float
-
The function input for approximating ln(B(z, w))
-
Returns:
float
|
|
Returns the lower incomplete (unregularized) beta function
-
a
:
float
-
The first Beta parameter, a positive real number.
-
b
:
float
-
The second Beta parameter, a positive real number.
-
x
:
float
-
The upper limit of the integral.
-
Returns:
float
|
|
Returns the regularized lower incomplete beta function
-
a
:
float
-
The first Beta parameter, a positive real number.
-
b
:
float
-
The second Beta parameter, a positive real number.
-
x
:
float
-
The upper limit of the integral.
-
Returns:
float
|
|
Power series for incomplete beta integral. Use when b*x
is small and x not too close to 1.
-
a
:
float
-
b
:
float
-
x
:
float
-
Returns:
float
|