Header menu logo FSharp.Stats

NegativeBinomial_failures Type

The distribution of the number of failures (k) before the rth success in repeated independent bernoulli trials with individual probability p.

Static members

Static member Description

NegativeBinomial_failures.CDF(r) (p) (k)

Full Usage: NegativeBinomial_failures.CDF(r) (p) (k)

Parameters:
    r : int
    p : float
    k : float

Returns: float Probability of requiring a maximum of k failures when r successes are required at a individual probability of p

Computes the cumulative distribution function. P(X lower or equal then k)

X=the number of failures before the rth succeess

r : int
p : float
k : float
Returns: float

Probability of requiring a maximum of k failures when r successes are required at a individual probability of p

NegativeBinomial_failures.CheckParam(r) (p)

Full Usage: NegativeBinomial_failures.CheckParam(r) (p)

Parameters:
    r : int
    p : float

r : int
p : float

NegativeBinomial_failures.Init(r) (p)

Full Usage: NegativeBinomial_failures.Init(r) (p)

Parameters:
    r : int - The number of success states
    p : float - The probability of each independent bernoulli trial

Returns: DiscreteDistribution<float, int>

Initializes a negative binomial distribution.
The negative binomial distribution is a discrete probability distribution
that models the number of failures needed k to get the rth success in repeated
independent Bernoulli trials with probability p.

r : int

The number of success states

p : float

The probability of each independent bernoulli trial

Returns: DiscreteDistribution<float, int>

Example

NegativeBinomial_failures.InvCDF(r) (p) (k)

Full Usage: NegativeBinomial_failures.InvCDF(r) (p) (k)

Parameters:
    r : int
    p : float
    k : 'a

Returns: 'b

Computes the inverse cumulative distribution function (quantile function).

X=the number of failures before the rth succeess

r : int
p : float
k : 'a
Returns: 'b

NegativeBinomial_failures.Mean(r) (p)

Full Usage: NegativeBinomial_failures.Mean(r) (p)

Parameters:
    r : int -
    p : float -

Returns: float

Computes the mean.

r : int

p : float

Returns: float

Example

NegativeBinomial_failures.Mode(r) (p)

Full Usage: NegativeBinomial_failures.Mode(r) (p)

Parameters:
    r : int -
    p : float -

Returns: int

Computes the mode. Number of failures with the highest probability to obtain r successes with the last trial.

r : int

p : float

Returns: int

Example

NegativeBinomial_failures.PMF(r) (p) (k)

Full Usage: NegativeBinomial_failures.PMF(r) (p) (k)

Parameters:
    r : int
    p : float
    k : int

Returns: float Probability of requiring k failures when r successes are required at a individual probability of p

Computes the probability mass function

r : int
p : float
k : int
Returns: float

Probability of requiring k failures when r successes are required at a individual probability of p

NegativeBinomial_failures.PMFLn(r) (p) (k)

Full Usage: NegativeBinomial_failures.PMFLn(r) (p) (k)

Parameters:
    r : int
    p : float
    k : int

Returns: float log probability of requiring k failures when r successes are required at a individual probability of p

Computes the log probability mass function

r : int
p : float
k : int
Returns: float

log probability of requiring k failures when r successes are required at a individual probability of p

NegativeBinomial_failures.Sample(r) (p)

Full Usage: NegativeBinomial_failures.Sample(r) (p)

Parameters:
    r : int -
    p : float -

Returns: 'a

Produces a random sample using the current random number generator (from GetSampleGenerator()).

r : int

p : float

Returns: 'a

Example

NegativeBinomial_failures.SampleUnchecked(r) (p)

Full Usage: NegativeBinomial_failures.SampleUnchecked(r) (p)

Parameters:
    r : 'a -
    p : 'b -

Returns: 'c

Produces a random sample using the current random number generator (from GetSampleGenerator()).

r : 'a

p : 'b

Returns: 'c

Example

NegativeBinomial_failures.StandardDeviation(r) (p)

Full Usage: NegativeBinomial_failures.StandardDeviation(r) (p)

Parameters:
    r : int -
    p : float -

Returns: float

Computes the standard deviation.

r : int

p : float

Returns: float

Example

NegativeBinomial_failures.Support(r) (p)

Full Usage: NegativeBinomial_failures.Support(r) (p)

Parameters:
    r : int -
    p : float -

Returns: int * int

Returns the support of the NegativeBinomial distribution: [r, max Int32).

r : int

p : float

Returns: int * int

Example

NegativeBinomial_failures.ToString(r) (p)

Full Usage: NegativeBinomial_failures.ToString(r) (p)

Parameters:
    r : int -
    p : float -

Returns: string

A string representation of the distribution.

r : int

p : float

Returns: string

Example

NegativeBinomial_failures.Variance(r) (p)

Full Usage: NegativeBinomial_failures.Variance(r) (p)

Parameters:
    r : int -
    p : float -

Returns: float

Computes the variance.

r : int

p : float

Returns: float

Example

Type something to start searching.