Hypergeometric Type

Hypergeometric distribution

Static members

Static member Description

Hypergeometric.CDF(N) (K) (n) (x)

Full Usage: Hypergeometric.CDF(N) (K) (n) (x)

Parameters:
    N : int -
    K : int -
    n : int -
    x : float -

Returns: float

Computes the cumulative distribution function at x, i.e. P(X <= x).

N : int

K : int

n : int

x : float

Returns: float

Example

Hypergeometric.CheckParam(N) (K) (n)

Full Usage: Hypergeometric.CheckParam(N) (K) (n)

Parameters:
    N : int
    K : int
    n : int

N : int
K : int
n : int

Hypergeometric.CheckParam_k(N) (K) (n) (k)

Full Usage: Hypergeometric.CheckParam_k(N) (K) (n) (k)

Parameters:
    N : int
    K : int
    n : int
    k : int

N : int
K : int
n : int
k : int

Hypergeometric.Init(N) (K) (n)

Full Usage: Hypergeometric.Init(N) (K) (n)

Parameters:
    N : int -
    K : int -
    n : int -

Returns: DiscreteDistribution<float, int>

Initializes a hypergeometric distribution.

The hypergeometric distribution is a discrete probability distribution
that describes the probability of `k` successes (random draws for which the object
drawn has a specified feature) in `n` draws, without replacement, from a finite
population of size `N` that contains exactly `K` objects with that feature,
wherein each draw is either a success (`1.0`) or a failure (`0.0`).

The population size
The number of success states in the population
The number of draws

N : int

K : int

n : int

Returns: DiscreteDistribution<float, int>

Example

Hypergeometric.InvCDF(dof1) (dof2) (p)

Full Usage: Hypergeometric.InvCDF(dof1) (dof2) (p)

Parameters:
    dof1 : 'a -
    dof2 : 'b -
    p : 'c -

Returns: 'd

Computes the inverse cumulative distribution function (quantile function).

dof1 : 'a

dof2 : 'b

p : 'c

Returns: 'd

Example

Hypergeometric.Mean(N) (K) (n)

Full Usage: Hypergeometric.Mean(N) (K) (n)

Parameters:
    N : int -
    K : int -
    n : int -

Returns: float

Computes the mean.

N : int

K : int

n : int

Returns: float

Example

Hypergeometric.Mode(N) (K) (n)

Full Usage: Hypergeometric.Mode(N) (K) (n)

Parameters:
    N : int -
    K : int -
    n : int -

Returns: int

Computes the mode.

N : int

K : int

n : int

Returns: int

Example

Hypergeometric.PMF(N) (K) (n) (k)

Full Usage: Hypergeometric.PMF(N) (K) (n) (k)

Parameters:
    N : int -
    K : int -
    n : int -
    k : int -

Returns: float

Computes the probability mass function at k for P(X = k).

N : int

K : int

n : int

k : int

Returns: float

Example

Hypergeometric.Sample(N) (K) (n)

Full Usage: Hypergeometric.Sample(N) (K) (n)

Parameters:
    N : int -
    K : int -
    n : int -

Returns: int

Produces a random sample using the current random number generator (from GetSampleGenerator()) and returns the number of success states `k`.

N : int

K : int

n : int

Returns: int

Example

Hypergeometric.StandardDeviation(N) (K) (n)

Full Usage: Hypergeometric.StandardDeviation(N) (K) (n)

Parameters:
    N : int -
    K : int -
    n : int -

Returns: float

Computes the standard deviation.

N : int

K : int

n : int

Returns: float

Example

Hypergeometric.Support(N) (K) (n)

Full Usage: Hypergeometric.Support(N) (K) (n)

Parameters:
    N : int -
    K : int -
    n : int -

Returns: Interval<int>

Returns the support of the hypergeometric distribution: (0., Positive Infinity).

N : int

K : int

n : int

Returns: Interval<int>

Example

Hypergeometric.ToString(N) (K) (n)

Full Usage: Hypergeometric.ToString(N) (K) (n)

Parameters:
    N : int
    K : int
    n : int

Returns: string

A string representation of the distribution.

N : int
K : int
n : int
Returns: string

Hypergeometric.Variance(N) (K) (n)

Full Usage: Hypergeometric.Variance(N) (K) (n)

Parameters:
    N : int -
    K : int -
    n : int -

Returns: float

Computes the variance.

N : int

K : int

n : int

Returns: float

Example