Normal Type

Normal distribution.

Static members

Static member Description

Normal.CDF(mu) (sigma) (x)

Full Usage: Normal.CDF(mu) (sigma) (x)

Parameters:
    mu : float -
    sigma : float -
    x : float -

Returns: float

Computes the cumulative distribution function.

mu : float

sigma : float

x : float

Returns: float

Example

Normal.CheckParam(mu) (sigma)

Full Usage: Normal.CheckParam(mu) (sigma)

Parameters:
    mu : float
    sigma : float

mu : float
sigma : float

Normal.Estimate(samples)

Full Usage: Normal.Estimate(samples)

Parameters:
    samples : seq<float> -

Returns: ContinuousDistribution<float, float>

Estimates the Normal distribution parameters from sample data with maximum-likelihood.

samples : seq<float>

Returns: ContinuousDistribution<float, float>

Example

Normal.Init(mu) (sigma)

Full Usage: Normal.Init(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: ContinuousDistribution<float, float>

Initializes a Normal distribution

mu : float

sigma : float

Returns: ContinuousDistribution<float, float>

Example

Normal.InvCDF(mu) (sigma) (p)

Full Usage: Normal.InvCDF(mu) (sigma) (p)

Parameters:
    mu : float -
    sigma : float -
    p : float -

Returns: float

Computes the quantile function (inverse cumulative distribution).

mu : float

sigma : float

p : float

Returns: float

Example

Normal.Mean(mu) (sigma)

Full Usage: Normal.Mean(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: float

Computes the mean.

mu : float

sigma : float

Returns: float

Example

Normal.Mode(mu) (sigma)

Full Usage: Normal.Mode(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: float

Computes the mode.

mu : float

sigma : float

Returns: float

Example

Normal.PDF(mu) (sigma) (x)

Full Usage: Normal.PDF(mu) (sigma) (x)

Parameters:
    mu : float -
    sigma : float -
    x : float -

Returns: float

Computes the probability density function.

mu : float

sigma : float

x : float

Returns: float

Example

Normal.Sample(mu) (sigma)

Full Usage: Normal.Sample(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: float

Produces a random sample using the current random number generator (from GetSampleGenerator()).

mu : float

sigma : float

Returns: float

Example

Normal.SampleUnchecked(mu) (sigma)

Full Usage: Normal.SampleUnchecked(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: float

Produces a random sample using the current random number generator (from GetSampleGenerator()).

mu : float

sigma : float

Returns: float

Example

Normal.StandardDeviation(mu) (sigma)

Full Usage: Normal.StandardDeviation(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: float

Computes the standard deviation.

mu : float

sigma : float

Returns: float

Example

Normal.Support(mu) (sigma)

Full Usage: Normal.Support(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: Interval<float>

Returns the support of the exponential distribution: [0, Positive Infinity).

mu : float

sigma : float

Returns: Interval<float>

Example

Normal.ToString(mu) (sigma)

Full Usage: Normal.ToString(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: string

A string representation of the distribution.

mu : float

sigma : float

Returns: string

Example

Normal.Variance(mu) (sigma)

Full Usage: Normal.Variance(mu) (sigma)

Parameters:
    mu : float -
    sigma : float -

Returns: float

Computes the variance.

mu : float

sigma : float

Returns: float

Example