LinearAlgebraManaged Module

This module is for internal use only.

Types

Type Description

range

Functions and values

Function or value Description

Cholesky a

Full Usage: Cholesky a

Parameters:
Returns: Matrix<float>
a : matrix
Returns: Matrix<float>

Condition A

Full Usage: Condition A

Parameters:
    A : 'a

Returns: 'b
A : 'a
Returns: 'b

EigenSpectrum A

Full Usage: EigenSpectrum A

Parameters:
    A : 'a

Returns: 'b
A : 'a
Returns: 'b

Hessenberg A

Full Usage: Hessenberg A

Parameters:
Returns: matrix * Matrix<float>
A : matrix
Returns: matrix * Matrix<float>

HouseholderTransform A i

Full Usage: HouseholderTransform A i

Parameters:
Returns: Vector<float>

This method computes and performs a Householder reflection. It will change the
input matrix and return the reflection vector.

A : matrix

i : int

Returns: Vector<float>

Example

Inverse A

Full Usage: Inverse A

Parameters:
Returns: Matrix<float>
A : Matrix<float>
Returns: Matrix<float>

LU A

Full Usage: LU A

Parameters:
Returns: (int -> int) * Matrix<float> * Matrix<float>

For a matrix A, the LU factorization is a pair of lower triangular matrix L and upper triangular matrix U so that A = L*U.
The pivot function encode a permutation operation such for a matrix P P*A = L*U.

A : Matrix<float>

Returns: (int -> int) * Matrix<float> * Matrix<float>

Example

NYI ()

Full Usage: NYI ()

Parameters:
    () : unit

Returns: 'a
() : unit
Returns: 'a

QR A

Full Usage: QR A

Parameters:
Returns: matrix * matrix

Matches the union type of the matrix and invokes the according QR factorization function

A : matrix

Returns: matrix * matrix

Example

QRDense A

Full Usage: QRDense A

Parameters:
Returns: matrix * Matrix<float>

QR factorization function for dense matrices

A : matrix

Returns: matrix * Matrix<float>

Example

QRSparse A

Full Usage: QRSparse A

Parameters:
Returns: matrix * matrix

QR factorization function for sparse matrices, returns Q as a product of givens rotations and R as upper triangular

A : SparseMatrix<float>

Returns: matrix * matrix

Example

SVD a

Full Usage: SVD a

Parameters:
Returns: vector * matrix * matrix
a : matrix
Returns: vector * matrix * matrix

SolveLinearSystem A b

Full Usage: SolveLinearSystem A b

Parameters:
Returns: Vector<float>

Solves a system of linear equations, AX = B, with A LU factorized.

A : matrix

b : vector

Returns: Vector<float>

Example

SolveLinearSystems A B

Full Usage: SolveLinearSystems A B

Parameters:
Returns: Matrix<float>

Solves a system of linear equations, Ax = b, with A LU factorized.

A : matrix

B : matrix

Returns: Matrix<float>

Example

SolveTriangularLinearSystem K v isLower

Full Usage: SolveTriangularLinearSystem K v isLower

Parameters:
Returns: Vector<float>
K : Matrix<float>
v : Vector<float>
isLower : bool
Returns: Vector<float>

SolveTriangularLinearSystems K B isLower

Full Usage: SolveTriangularLinearSystems K B isLower

Parameters:
Returns: Matrix<float>
K : Matrix<float>
B : Matrix<float>
isLower : bool
Returns: Matrix<float>

eigenvalues m

Full Usage: eigenvalues m

Parameters:
    m : 'c

Returns: 'd
m : 'c
Returns: 'd

eigenvectors m

Full Usage: eigenvectors m

Parameters:
    m : 'c

Returns: 'd
m : 'c
Returns: 'd

hatMatrix designMatrix

Full Usage: hatMatrix designMatrix

Parameters:
    designMatrix : Matrix<float> -

Returns: Matrix<float>

computes the hat matrix by the QR decomposition of the designmatrix used in ordinary least squares approaches

designMatrix : Matrix<float>

Returns: Matrix<float>

Example

leastSquares A b

Full Usage: leastSquares A b

Parameters:
Returns: Vector<float>
A : Matrix<float>
b : vector
Returns: Vector<float>

leastSquaresCholesky A b

Full Usage: leastSquaresCholesky A b

Parameters:
Returns: Vector<float>
A : Matrix<float>
b : Vector<float>
Returns: Vector<float>

leverage designMatrix

Full Usage: leverage designMatrix

Parameters:
    designMatrix : Matrix<float> -

Returns: vector

computes the leverage directly by QR decomposition of the designmatrix used in ordinary least squares approaches
and computing of the diagnonal entries of the Hat matrix, known as the leverages of the regressors

designMatrix : Matrix<float>

Returns: vector

Example

leverageBy hatMatrix

Full Usage: leverageBy hatMatrix

Parameters:
Returns: Vector<float>

computes the leverages of every dataPoint of a dataSet given by the diagonal of the hat matrix.

hatMatrix : Matrix<float>

Returns: Vector<float>

Example

pseudoInvers matrix

Full Usage: pseudoInvers matrix

Parameters:
Returns: Matrix<float>

Calculates the pseudo inverse of the matrix

matrix : Matrix<float>

Returns: Matrix<float>

Example

sign f

Full Usage: sign f

Parameters:
    f : float -

Returns: float

Computes the sign of a floating point number.

f : float

Returns: float

Example

sumfR f (arg2, arg3)

Full Usage: sumfR f (arg2, arg3)

Parameters:
    f : int -> float
    arg1 : int
    arg2 : int

Returns: float
Modifiers: inline
f : int -> float
arg1 : int
arg2 : int
Returns: float

symmetricEigenspectrum a

Full Usage: symmetricEigenspectrum a

Parameters:
Returns: matrix * Vector<float>
a : matrix
Returns: matrix * Vector<float>

symmetricEigenvalues a

Full Usage: symmetricEigenvalues a

Parameters:
    a : 'c

Returns: 'd
a : 'c
Returns: 'd

symmetricEigenvectors a

Full Usage: symmetricEigenvectors a

Parameters:
    a : 'a

Returns: 'b
a : 'a
Returns: 'b

unitV k

Full Usage: unitV k

Parameters:
    k : int -

Returns: Vector<float>

Generates a unit vector [1 0 .. 0 ].

k : int

Returns: Vector<float>

Example